
Equations-of-motion approach to the spin-1
2 Ising model on the Bethe lattice

Ferdinando Mancini* and Adele Naddeo†

Dipartimento di Fisica “E. R. Caianiello”–Unitá CNISM di Salerno, Universitá degli Studi di Salerno, 84081 Baronissi (SA), Italy
�Received 5 June 2006; published 11 December 2006�

We exactly solve the ferromagnetic spin-1
2 Ising model on the Bethe lattice in the presence of an external

magnetic field by means of the equations of motion method within the Green’s function formalism. In particu-
lar, such an approach is applied to an isomorphic model of localized Fermi particles interacting via an intersite
Coulomb interaction. A complete set of eigenoperators is found together with the corresponding eigenvalues.
The Green’s functions and the correlation functions are written in terms of a finite set of parameters to be
self-consistently determined. A procedure is developed that allows us to exactly fix the unknown parameters in
the case of a Bethe lattice with any coordination number z. Nonlocal correlation functions up to four points are
also provided together with a study of the relevant thermodynamic quantities.
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I. INTRODUCTION

Recently, it has been shown �1� that a system built up of q
species of Fermi particles, localized on the sites of a Bravais
lattice and subjected to finite-range interactions, is exactly
solvable in any dimension. Exactly solvable means that it is
always possible to find a complete set of eigenvalues and
eigenoperators of the Hamiltonian, which close the hierarchy
of the equations of motion. In such a way, exact expressions
for the relevant Green’s functions and correlation functions
can be derived. These expressions are just formal because
they depend on a finite set of parameters to be self-
consistently determined. In Refs. �2–4� it has been shown
how it is possible to fix such parameters exactly by means of
algebra constraints in the case of one dimension and q=1,
q=2, and q=3, respectively. In this way, complete and exact
solutions of these systems have been obtained.

A system of q species of Fermi particles has been shown
�1� to be isomorphic to a spin-q

2 Ising-like model in the pres-
ence of an external magnetic field, so opening a different
route to the study of spin systems, which can be very diffi-
cult in two and three dimensions when attached by the trans-
fer matrix method. Furthermore, this approach can shed new
light on how to get an exact solution for these systems in
higher dimensions in the presence of an external magnetic
field as it is always possible �1� to find an exact expression
for the corresponding Green’s functions and correlation func-
tions. The exact knowledge of the eigenenergies of the sys-
tem can give information on the energy scales ruling the
physical behavior and the response of the system and can
find an application as unbiased check for the approximate
studies present in the literature. Within our approach the
problem is that correlation and Green’s functions depend on
a finite set of unknown parameters to be self-consistently
determined. A complete exact solution of the system is ob-
tained only when such parameters are known. These param-
eters cannot be determined by means of the dynamics and are
fixed by choosing the representation where the field opera-

tors are realized. In particular �cf. Section 2.4 in Ref. �6��,
they can be fixed by appropriate self-consistent equations
which are the manifestation of symmetries of the model, al-
gebraic properties of the field operators, boundary conditions
�i.e., properties of the underlying lattice, phase of the system
according to the values of the external thermodynamical pa-
rameters�. It has been shown how to fix exactly such param-
eters by means of algebra constraints in the one-dimensional
�1D� case �2–4� and we are now working on the possibility
to introduce new algebra constraints and topological rela-
tions in order to fix the self-consistent parameters in higher
dimensions. The first step to realize such an ambitious pro-
gram appears to be the application of our technique to a
Bethe lattice of any coordination number z. In this article we
apply our formulation, the composite operator method
�COM� �5,6�, to the study of a system of q=1 species of
Fermi particles interacting with an intersite Coulomb inter-
action on the Bethe lattice with coordination number z. Such
a model is shown to be isomorphic to the spin-1

2 Ising model
on the Bethe lattice in the presence of an external magnetic
field.

Bethe �7� and Bethe-like lattices �8� have been widely
studied in solid state and statistical physics because they rep-
resent the underlying lattices on which many systems can be
exactly solved �9–21�. Following the line of reasoning that
refers to the mean field theory of magnetism, the Bethe-
Peierls �22� approximation was developed in 1935 and 1936
in order to describe crystalline alloys or Ising models. It
takes exactly into account the interaction of a given spin with
its nearest neighbors but introduces a mean field in order to
express the interactions between such neighbors and all the
other spins in the lattice. Later, it was pointed out �23� that
such an approximation becomes exact on the Bethe lattice. In
particular, it was shown that the partition function of the
ferromagnetic spin-1

2 Ising model on the Bethe lattice with
any coordination number z is equivalent to that in the Bethe
approximation �23�. Then, the equivalence of the exact solu-
tion of the Bethe lattice spin-1

2 Ising model to the Bethe-
Peierls approximation was shown also in the antiferromag-
netic case �24�. Summarizing, there are two special
properties that make Bethe lattices particularly suited for the-
oretical investigations: the self-similar structure which may
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lead to recursive solutions and the absence of closed loops
which restricts interference effects of quantum-mechanical
particles in the case of nearest-neighbor coupling. Further-
more, Bethe and Bethe-like lattices have attracted a lot of
interest because they usually reflect essential features of sys-
tems even when conventional mean-field theories fail �17�.
The reason is that such lattices are capable to take into ac-
count correlations which are usually lost in conventional
mean-field calculations. The spin-1

2 Ising model on the Bethe
lattice can be exactly solved by means of the transfer matrix
technique �25� which reduces the solution to an eigenvalue
problem of the second order and all the relevant thermody-
namic quantities such as the magnetization, susceptibility,
and so on, can be calculated by means of recursion relations,
thanks to the nested structure of the underlying lattice. The
same technique has been recently employed in the exact cal-
culation of the spin-spin correlation functions �S�0�S�n�� for
any temperatures T and external field h �26,27�. Exact ex-
pressions for the free energy and the magnetization of a spin-
1
2 Ising model on a two-layer Bethe lattice in the presence of
magnetic fields different in the two layers have been also
obtained together with a study of the whole phase diagram
by means of an iteration technique �28�. Also, it should be
mentioned a large activity in the framework of the athermal
random-field Ising model �RFIM�, where analytical results
have been obtained on Bethe lattices �29,30�.

In this paper we exactly solve the ferromagnetic spin-1
2

Ising model on the Bethe lattice with any coordination num-
ber z in the presence of an external magnetic field within the
COM approach �5,6�. All the Green’s functions and correla-
tion functions are obtained together with the behavior of the
relevant thermodynamic properties. Two-point �S�0�S�j��
and three-point �S�0�S�j�S�k�� spin-spin correlation functions
are also provided together with nonlocal correlation func-
tions of higher order. The manuscript is organized as follows.
In Sec. II, we give the general Hamiltonian of the spin-1

2
Ising model on the Bethe lattice and the mapping onto a
model of Fermi particles with intersite Coulomb interactions.
In Sec. III, we present the general solution in terms of eigen-
values and eigenvectors. In Sec. IV, we show how to close
the system of self-consistent equations and find the unknown
parameters in order to compute the correlation and the
Green’s functions. In Sec. V, we compute the local correla-
tion functions and in Sec. VI, the nonlocal ones. In Sec. VII,
we study all the relevant thermodynamic quantities, such as
magnetization, susceptibility, internal energy, specific heat,
and entropy as functions of the temperature and the external
magnetic field, specializing the general formulas to the case
of a Bethe lattice with coordination number z=3 and z=4.
Finally, some concluding remarks and outlooks of our work
are given. Some technical Appendixes follow.

As a final remark, we would like to stress that the moti-
vation of this work is to show that the formalism of Green’s
functions and equations of motion is a convenient technique
to study spin systems. Most of the techniques used in the
literature for the study of these systems are based on the
transfer matrix method. This latter formalism is a very pow-
erful technique and has been largely applied with success to
a huge number of models. After the brilliant solution by On-

sager �31� for the two-dimensional spin-1
2 Ising model in

zero field, many other two-dimensional �2D� models, such as
the dimer problem, six-vertex, eight-vertex have been solved
by making use of the transfer matrix method �see Baxter’s
book �25� for a comprehensive list of references�. However,
it should be noticed that this method is very transparent and
convenient for the case of one dimension, but becomes com-
plicate for higher dimensions. In spite of the tremendous
work done �among the most recent results, the derivation of
the order parameter of the chiral Potts model by Baxter �32�
has to be mentioned�, many problems remain unsolved. The
exact partition function in a finite magnetic field is still un-
known. No exact results have been obtained for the three-
dimensional model. By using the equation of motion formal-
ism, we have constructed a general method to study Ising
spin systems �1�. Such a method is general, in the sense that
it has been formulated for any dimension of the system. We
can exactly calculate a complete set of eigenoperators and
eigenvalues of the Hamiltonian, and consequently to derive
analytical expressions for the correlation functions. In order
that this scheme of calculation could be used in practice, it is
necessary to calculate a set of unknown parameters. The
number of unknown parameters depends not only on the di-
mensions of the system, but also on the dimension of the
spin; for a Ising spin-q /2 system on a lattice of coordination
number z, the number of unknown parameters is 2qz �cf. Ref.
�1��. Our previous studies �1–4� show that it is possible to
find the necessary self-consistent equations by using not only
properties of the lattice, but also symmetry and algebraic
properties of the field operators. In the last two years we
have been performing a systematic study of this last point.
We started by considering the simplest problem of spin-1 /2
on a linear chain �2�. Then, we considered the case of spin-1
�3� and spin-3 /2 �4�, always for 1D systems. The extension
to spin higher than 1/2 is not immediate, but requires the
introduction of higher composite fields �projection opera-
tors�. After this study of 1D systems, we decided to consider
more complicate lattices, by considering the Bethe lattice.
This lattice has the same topology of 1D because the absence
of closed loops, but the analysis requires a dependence on
the coordination number. For the Bethe lattice we have
shown that the problem can be completely solved; we have
shown that all the known results existing in literature can be
reproduced. Furthermore, we have obtained new results, not
previously obtained, as for the case of three-point correlation
functions. The next step we have in program is the study of
the spin-1 /2 for the 2D lattice. This step is a very hard task;
the properties of the lattice are different and the introduction
of new concepts for writing down the self-consistent equa-
tions for the unknown parameters will be necessary.

II. THE MODEL

Let us consider the spin-1
2 Ising model with nearest-

neighbor interactions, in presence of an uniform external
magnetic field h, on a Cayley tree with coordination number
z. The Hamiltonian can be written as
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H = − hS�0� + �
p=1

z

H�p�, �1�

where S�0� is the spin operator at the central site �0�. The
spin variables S take only two values: S= ±1. H�p� is the
Hamiltonian of the pth sub-tree rooted at the site �0� and can
be written as

H�p� = − hS�p� − JS�0�S�p� + �
m=1

z−1

H�p,m�, �2�

where �p�, �p=1, . . . ,z� are the nearest neighbors of �0�, also
termed the first shell. In turn H�p,m� describes the mth subtree
rooted at the site �p�. The process may be continued until we
eventually reach the boundary sites, described by the Hamil-
tonian

H�p1,. . .,pr� = − hS�p1, . . . ,pr� − JS�p1, . . . ,pr−1�S�p1, . . . ,pr� ,

�3�

where �p1 , p2 , . . . , pr� �p1=1 , . . . ,z; p2 , p3 , . . . =1 , . . . ,z−1�
are the boundary points belonging to the rth shell. In what
follows we focus only on the sites deep in the interior of the
tree, so ignoring the boundary, i.e., we concentrate on the
Bethe lattice. Let us now consider the transformation

S�i� = 2n�i� − 1, �4�

where i is a generic site of the lattice,

n�i� = c†�i�c�i� �5�

is the density operator for a spinless fermionic field, c�i� and
c†�i� being the annihilation and creation operators satisfying
the canonical anticommutation relations

�c�i,t�,c†�j,t�	 = �ij,

�c�i,t�,c�j,t�	 = �c†�i,t�,c†�j,t�	 = 0. �6�

In this way a mapping is established between the spin-1
2

Ising model and a model of Fermi particles with intersite
Coulomb interactions on the Bethe lattice, where the corre-
spondence between the Ising and the fermionic variables is

S = 1 ⇒ n = 1,

S = − 1 ⇒ n = 0. �7�

The Ising Hamiltonian, Eqs. �1�–�3�, with the transformation
�4�, takes the form

H = E0 + 2�zJ − h�n�0� + �
p=1

z

Ĥ�p�,

Ĥ�p� = 2�zJ − h�n�p� − 4Jn�0�n�p� + �
m=1

z−1

Ĥ�p,m�,

]

Ĥ�p1,. . .,pr� = 2�zJ − h�n�p1, . . . ,pr�

− 4Jn�p1, . . . ,pr−1�n�p1, . . . ,pr� , �8�

where the constant term E0 is defined as

E0 = h + z�h − J��
p=1

r

�z − 1�p−1 = h + z�h − J�
�z − 1�r − 1

z − 2
.

�9�

We immediately recognize the chemical potential �=2�h
−zJ� and the potential strength V=−4J in a fermionic lan-
guage. Also here we ignore the boundary sites and reduce to
the Bethe lattice. Such an Hamiltonian enjoys the particle-
hole symmetry, that is, it turns out to be invariant under the
transformation n→1−n, which in the spin language corre-
sponds to the spin-inversion symmetry S→−S, h→−h; in
particular the chemical potential as a function of n scales as

��1 − n� = zV − ��n� . �10�

This scaling law implies that the magnetization vanishes in
zero external magnetic field. However, as it will be shown in
Sec. VII the Hamiltonian �1� and/or �8� also admits solutions
exhibiting a spontaneous breakdown of the particle-hole
symmetry; that is a magnetization different from zero in ab-
sence of magnetic field.

We see that the density operator satisfies the equation of
motion

i
�

�t
n�i� = �n�i�,H� = 0, �11�

so that standard methods based on the use of equations of
motion and Green’s function formalism are not immediately
applicable in terms of this operator. The relevant equation of
motion to be considered is

i
�

�t
c�i� = − �c�i� − 4zJc�i�n��i� , �12�

where

n��i� =
1

z
�
p=1

z

n�i,p� , �13�

�i , p� being the nearest neighbors of the site i.
In the next section, we will show in detail how to deal

with such an issue and build up the formalism. We shall put
the attention to the fermionic system and will solve the
Hamiltonian �8� by using the formalism of the equation of
motion and Green’s function method �1–6�.

III. COMPOSITE OPERATORS AND EQUATIONS
OF MOTION

In this section, we exactly solve the Hamiltonian �8� start-
ing from the identification of a suitable operatorial basis
�5,6�. In order to pursue this task, we focus on the central site
�0�, even though we could have chosen any other site thanks
to the symmetry of the Bethe lattice. Let us consider the
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following series of composite field operators:

�k�0� = c�0��n��0��k−1, k = 1,2, . . . , �14�

where, according to the definition �13� n��0�= 1
z �p=1

z n�p�, �p�
being the first neighbors of the site �0�. By using Eqs. �11�
and �12� it is easy to see that these operators satisfy the
hierarchy of equations of motion

i
�

�t
�k�0� = ��k�0�,H� = − ��k�0� − 4zJ�k+1�0� . �15�

However, we observe that the number operator n�i� satisfies
the following algebra:

�n�i��k = �c†�i�c�i��k = n�i�, k = 1,2, . . . . �16�

As shown in Appendixes A and B, this algebraic property
allows us to establish the following fundamental property of
the fields �n��i��k:

�n��i��k = �
m=1

z

Am
�k��n��i��m, �17�

where the coefficients Am
�k� are rational numbers which can

be calculated according to the scheme given in Appendix
B. Therefore, for k=z+1 the hierarchy of equations of
motion �15� closes as the additional operator �z+2�0�
=c�0��n��0��z+1 can be rewritten in terms of the previous z
+1 elements of Eq. �14� through the relation �17�. We are
thus able to derive a closed set of eigenoperators of the
Hamiltonian by defining the following composite operator:

��0� =

�1�0�
�2�0�
]

�z+1�0�
� =


c�0�
c�0�n��0�

]

c�0��n��0��z
� �18�

which satisfies the equation of motion

i
�

�t
��0� = ���0�,H� = ���0� , �19�

where the �z+1�� �z+1� energy matrix � is defined as

� =

− � − 4zJ 0 ¯ 0 0 0

0 − � − 4zJ ¯ 0 0 0

0 0 − � ¯ 0 0 0

] ] ] � ] ] ]

0 0 0 ¯ − � − 4zJ 0

0 0 0 ¯ 0 − � − 4zJ

0 − 4zJA1
�z+1� − 4zJA2

�z+1�
¯ − 4zJAz−2

�z+1� − 4zJAz−1
�z+1� − � − 4zJAz

�z+1�

� . �20�

The eigenvalues En of the energy matrix have the expres-
sions

En = − � − 4�n − 1�J, n = 1,2, . . . ,z + 1. �21�

At this stage we can say that we have formally, but exactly,
solved Hamiltonian �8� or its spin counterpart �1�–�3� as we
have found for them a complete set of eigenoperators and
eigenvalues for any coordination number z of the underlying
Bethe lattice. The solution is formal as we have to compute
still the correlation functions.

In order to do this, let us now define the thermal retarded
Green’s function

GR�t − t�� = �R���0,t��†�0,t���� = 	�t − t������0,t�,�†�0,t��	� ,

�22�

where �¯� denotes the quantum-statistical average over the
grand canonical ensamble. By introducing the Fourier trans-
form

GR�t − t�� =
i

�2
��−�

+�

d�e−i��t−t��GR��� �23�

and by means of the Heisenberg equation �19� we get the
equation

�� − ��GR��� = I , �24�

where I is the normalization matrix, defined as

I = ����0,t�,�†�0,t�	� . �25�

The solution of Eq. �24� is �5,6�

GR��� = �
n=1

z+1
�n�

� − En + i�
, �26�

where �n� are the spectral density matrices, to be calculated
through the formula �5,6�
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ab
�n� = �an�

c=1

z+1

��nc�−1Icb, �27�

where � is the �z+1�� �z+1� matrix whose columns are the
eigenvectors of the matrix �.

The matrix � has the expression

� =

1 zz  z

2
�z

¯  z

z − 2
�z  z

z − 1
�z

1

0 zz−1  z

2
�z−1

¯  z

z − 2
�z−1  z

z − 1
�z−1

1

0 zz−2  z

2
�z−2

¯  z

z − 2
�z−2  z

z − 1
�z−2

1

] ] ] � ] ] ]

0 z2  z

2
�2

¯  z

z − 2
�2  z

z − 1
�2

1

0 z1  z

2
�1

¯  z

z − 2
�1  z

z − 1
�1

1

0 z0  z

2
�0

¯  z

z − 2
�0  z

z − 1
�0

1

� ;

�28�

in general, the matrix element �p,k has the expression

�p,k = �
1, k = 1,p = 1,

0, k = 1,p � 1,

 z

k − 1
�z+1−p

, k � 1. � �29�

By means of the definition �25� and of the recursion rule
�17�, the normalization matrix can be easily calculated and
has the expression

I =

1 I1,2 I1,3 ¯ I1,z−1 I1,z I1,z+1

I1,2 I1,3 I1,4 ¯ I1,z I1,z+1 I2,z+1

I1,3 I1,4 I1,5 ¯ I1,z+1 I2,z+1 I3,z+1

] ] ] � ] ] ]

I1,z−1 I1,z I1,z+1 ¯ Iz−3,z+1 Iz−2,z+1 Iz−1,z+1

I1,z I1,z+1 I2,z+1 ¯ Iz−2,z+1 Iz−1,z+1 Iz,z+1

I1,z+1 I2,z+1 I3,z+1 ¯ Iz−1,z+1 Iz,z+1 Iz+1,z+1

� ,

�30�

where the elements Ip,z+1 �p=2, . . . ,z+1� are expressed as

Ip,z+1 = �
m=1

z

Am
�p+z−1�I1,m+1. �31�

Therefore we need to know only the elements I1,k �k
=2, . . . ,z+1� which are given by

I1,k = ��n��0��k−1� = ��k−1�. �32�

Then, the spectral density matrices �n� can be easily calcu-
lated by means of Eq. �27� once we keep in mind that, ac-
cording to the structure of the normalization matrix I, Eqs.
�30� and �31�, there exist only z+1 independent matrix ele-

ments 1,k
�n� for each of the z+1 matrices �n� while all the

others can be obtained as linear combinations of these latter
according to Eq. �31�. As a result we get

�n� = �n��n�, �33�

where �n are functions of the elements I1,k with k=1, . . . ,z
+1 and ��n� are numerical matrices. In particular we have the
following expressions:

�1 = �
k=1

z+1

�1,k
−1 I1,k,

�p =  z

p − 1
�z

�
k=2

z+1

�p,k
−1 I1,k, p = 2, . . . ,z + 1 �34�

and

�1,k
�1� = �1,0,0, . . . ,0,0,0�, k = 1, . . . ,z + 1,

�1,k
�n� = n − 1

z
�k−1

, n = 2, . . . ,z + 1. �35�

The correlation function

C�t − t�� = ���0,t��†�0,t��� =
1

�2
��−�

+�

d�e−i��t−t��C���

�36�

can be computed starting from Eq. �26� and recalling the
relation

C��� = − �1 + tanh��

2
��Im�GR���� . �37�

Then we get

C��� = 
�
n=1

z+1

�n�Tn��� − En� , �38�

C�t − t�� =
1

2�
n=1

z+1

e−iEn�t−t���n�Tn, �39�

where

Tn = 1 + tanh�En

2
� . �40�

Equations �26� and �38� are the exact solution of the prob-
lem. Such a solution is only formal because the complete
knowledge of the retarded and correlation functions is not
fully achieved owing to the presence of the unknown static
correlation functions ��m�= ��n��0��m� �m=1, . . . ,z� appear-
ing in the normalization matrix I due to the noncanonical
algebra satisfied by the composite field operator ��0�. Such
unknown parameters will be calculated according to the self-
consistent scheme given in the following section.

IV. SELF-CONSISTENCY

As we have shown in the previous section, a complete
solution of the model requires the knowledge of the correla-
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tors ��m�= ��n��0��m�. In order to compute these quantities, let
us write the Hamiltonian �8� as the sum of two commuting
terms

H = H0 + HI,

HI = − 4Jn�0��
p=1

z

n�p� . �41�

Because �H0 ,HI�=0, for any operator O we can write its
average as

�O� =
Tr�Oe−�H	
Tr�e−�H	

=
Tr�Oe−�HIe−�H0	
Tr�e−�HIe−�H0	

=
�Oe−�HI�0

�e−�HI�0
, �42�

where �¯�0 is the trace with respect to the reduced Hamil-
tonian H0

�¯�0 =
Tr�. . .e−�H0	

Tr�e−�H0	
. �43�

Let us now consider the correlation functions C1,k
= �c�0�c†�0��n��0��k−1� ,k=1, . . . ,z+1. By means of Eq. �42�
we can derive the following relation:

C1,k

C1,1
=

�c�0�c†�0��n��0��k−1e−�HI�0

�c�0�c†�0�e−�HI�0
, k = 1, . . . ,z + 1.

�44�

Now from the Pauli principle we have the algebraic relation

c†�i�n�i� = 0 �45�

which leads to the property

c†�0�e−�HI = c†�0� . �46�

Then Eq. �44� takes the form

C1,k

C1,1
=

�c�0�c†�0��n��0��k−1�0

�c�0�c†�0��0
, k = 1, . . . ,z + 1. �47�

Now let us observe that H0 describes a system where the
original lattice has been reduced to the central site �0� and to
z sublattices, all disconnected among them and topologically
equivalent to the starting one. Therefore, in the H0 represen-
tation the correlation functions which connect sites belong-
ing to disconnected graphs can be decoupled

�f�n�0�	g�n�p�	�0 = �f�n�0�	�0�g�n�p�	�0,

�g�n�p�	h�n�q�	�0 = �g�n�p�	�0�h�n�q�	�0. �48�

Here f�n�0�	, g�n�p�	 and h�n�q�	, with p and q belonging to
different sublattices, are any functions of the particle density.
By means of such a property, Eq. �47� can be cast in the
following form:

C1,k

C1,1
= ��n��0��k−1�0, k = 1, . . . ,z + 1. �49�

In Appendix C we show that

��n��0��k�0 = F�z,k�, �X� k = 1, . . . ,z , �50�

where F�z,k��X� is a polynomial of order k in the variable X,
defined as

X = �n��0��0 =
C1,2

C1,1
, �51�

whose explicit expression is

F�z,k��X� = �
p=1

z

ap
�z,k�Xp, ap

�z,k� =
1

zkbp
�k�z

p
�; �52�

here bp
�k� are some numerical coefficients defined in Appen-

dix C. The previous analysis shows that all the properties of
the system can be expressed in terms of only one parameter
X defined by Eq. �51�. In order to determine this parameter
we use the self-consistent equation

C1,1 = 1 − ��1�, �53�

where we required the translational invariant condition
�n��i��= �n�i��. In order to exploit this equation we note that
from Eq. �39�, by using the definition �27�, we get

Iab = Ca,b + �
m,p=1

z+1

�am��mp�−1e−�EmCp,b. �54�

Now, writing such equation for I11 and I12 and recalling that
I11=1, I12=��1�, we obtain

1 = C1,1 + �
m,p=1

z+1

�1m��mp�−1e−�EmCp,1, �55�

��1� = C1,2 + �
m,p=1

z+1

�1m��mp�−1e−�EmCp,2. �56�

Putting such expressions in the right hand side of the self-
consistent equation �53� we get

C1,1 = C1,1 − C1,2 + �
m,p=1

z+1

�1m��mp�−1e−�Em�Cp,1 − Cp,2� ,

�57�

which, by using Eqs. �49� and �51�, can be rewritten as

1 = �1 − X� + �
m=1

z+1

e−�EmW�z,m�, �58�

where

W�z,m� = �
p=1

z+1

�1m��mp�−1���n��0��p−1�0 − ��n��0��p�0� .

�59�

The result �50� allows us to express the function W�z,m� in
terms of the parameter X; indeed it can be shown that

W�z,m� =  z − 1

m − 1
�Xm−1�1 − X�z+1−m, m = 1, . . . ,z ,
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W�z,z+1� = 0. �60�

Then, it is possible to write Eq. �58� as follows:

1 = �1 − X��1 + �
m=1

z

e−�Em z − 1

m − 1
�Xm−1�1 − X�z−m� .

�61�

Recalling that Em=−�−4�m−1�J, �=2�h−zJ� and making
some algebraic manipulations such an equation finally takes
the form

X = �1 − X�e���1 + �e4�J − 1�X�z−1. �62�

Equation �62� is the main result of this section; it allows us
to determine the parameter X in terms of the external param-
eters �, T, J �or h, T, J�.

Let us notice that, if we define a parameter x as

x =
e2�J

1 + �e4�J − 1�X
, �63�

then Eq. �62� can be cast in the form

e2�h = xz−1 �e2�J − x�
�xe2�J − 1�

�64�

which coincides with the one given by Baxter �see Ref. �25�,
p. 53�. In our case the quantity X has a definite physical
meaning, it is the particle density of the first shell in the H0
representation.

V. LOCAL CORRELATION FUNCTIONS
AND RELATED PHYSICAL QUANTITIES

The aim of this section is to compute all the local corre-
lation functions by expressing them in terms of the parameter
X introduced in Eq. �51�. The calculation of the relevant
physical quantities, that is particle density, magnetization,
susceptibility, internal energy, specific heat, and entropy per
site, then easily follows.

Let us start by recalling the results �49�, �50�, and �52�
which allow us to write the correlation functions in terms of
the parameter X as follows:

C1,k = C1,1�
p=1

z

ap
�z,k−1�Xp, k = 2, . . . ,z + 1, �65�

where C1,1, due to Eq. �46�, can be expressed as

C1,1 =
�c�0�c†�0��0

�e−�HI�0
. �66�

In order to compute C1,1 let us observe that in the H0 repre-
sentation c�0� satisfies the equation of motion

i
�

�t
c�0� = − �c�0� . �67�

Then it is immediate to see that

�c�0�c†�0��0 =
1

e�� + 1
, �n�0��0 =

1

e−�� + 1
. �68�

In order to evaluate the quantity �e−�HI�0 let us observe that,
by means of the algebraic property �n�i��m=n�i�, we can
write

e−�HI = e4�Jn�0��p=1
z n�p� = �

p=1

z

�1 + An�0�n�p�� , �69�

where A=e4�J−1. By using the property �48� and by recall-
ing that in the Bethe lattice all sites are equivalent and the
parameter X satisfies Eq. �62�, straightforward calculations
show that

�e−�HI�0 = 1 + ��1 + AX�z − 1��n�0��0 =
1 + AX2

�1 − X��e�� + 1�
.

�70�

Putting Eqs. �68� and �70� into Eq. �66� we finally get

C1,1 =
1 − X

1 + AX2 . �71�

Now we are ready to calculate the particle density

n = �n�0�� = 1 − C1,1 =
X�1 + AX�
1 + AX2 , �72�

the magnetization

m = �S�0�� = 2�n�0�� − 1 =
X�2 + AX� − 1

1 + AX2 �73�

and all the correlation functions

C1,k =
1 − X

1 + AX2 �
p=1

z

ap
�z,k−1�Xp, k = 2, . . . ,z + 1. �74�

Let us now switch to the calculation of the correlation
functions

��k� = ��n��0��k�, k = 1, . . . ,z ,

��k� = �n�0��n��0��k� . �75�

According to the scheme given in Appendix D we have

��k� =
1

1 + AX2 �
p=1

z

ap
�z,k�Xp��1 − X� +

X�1 + A�p

�1 + AX�p−1� , �76�

��k� =
1

1 + AX2 �
p=1

z

ap
�z,k�X

p+1�1 + A�p

�1 + AX�p−1 . �77�

The susceptibility per site can be calculated by means of Eq.
�73� and has the expression

� =
�m

�h
=

��1 − m2��1 + p�
1 − �z − 1�p

, �78�

where we introduced the parameter p, defined as
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p =
AX�1 − X�

1 + AX
. �79�

This expression coincides with the one given in Refs. �26�
with p playing the role of the ratio ��0� of the eigenvalues of
the second order transfer matrix V.

Recalling the Hamiltonian �1�, we obtain for the internal
energy per site

E�T� =
1

N
�H� = − J�m2�1 − p� + p� − hm , �80�

where we used the fact that the total number of points in the
graph is �25�

N = 1 + z�
q=1

r

�z − 1�q−1 = 1 + z
�z − 1�r − 1

z − 2
. �81�

Once E�T� is known, we can directly calculate the specific
heat, the free energy and the entropy �per site� by means of
the formulas

C =
dE

dT
, �82�

F�T� = E�T*� − T�
T*

T E�T̃� − E�T*�

T̃2
dT̃ , �83�

S�T� =
E�T� − F�T�

T
, �84�

where the value of E is given by Eq. �80� and the limit T*

→0 is understood.

VI. NON LOCAL CORRELATION FUNCTIONS
AND RELATED PHYSICAL QUANTITIES

In this section we will calculate the relevant non local
correlation functions; then we focus on the spin-spin one and
on the related correlation length which we compare with the
results existing in the literature �26�. We will show how our
procedure allows us to evaluate also higher order non local
functions with respect to the one given in Refs. �26�. Further
technical details are presented in Appendix E.

A. Two-point correlation functions

Let us start by defining the correlation functions

K�k��j� = ��n��0��kn�j�� , �85�

��k��j� = �n�0��n��0��kn�j�� , �86�

where j is a site at a distance of j steps from the central site.
Let us make for simplicity the choice that j belongs to the zth
subtree �but any subtree can be chosen� and let us focus first
on the two functions

K�1��j� = �n��0�n�j�� , �87�

��0��j� = �n�0�n�j�� . �88�

We see that ��0��j� is a two-point correlation function which
connects two sites which are j steps apart. Observing that
�n�z�n�j�� and �n�p�n�j��p�z connect two sites which are
j−1 and j+1 steps apart, respectively, it is immediate to see
that the two correlation functions K�1��j� and ��0��j� are re-
lated through the following relation:

K�1��j� =
1

z
��0��j − 1� +

z − 1

z
��0��j + 1� . �89�

Let us now study the function ��0��j�; it is immediate to see
that

��0��0� = �n�0�� = n ,

��0��1� = �n�0�n�1�� = ��1� = n2 + n�1 − n�p ,

��0��2� = �n�0�n�2�� =
1

z − 1
�z��2� − n� = n2 + n�1 − n�p2,

�90�

where we used the results of Appendixes A and D �cf. Eqs.
�D10�–�D12�� and we noticed that by means of Eq. �D10�
the parameter p, defined by Eq. �79�, can be expressed as
p= ��1�−n2

n�1−n� . On the other hand, in Appendix E we prove the

following recursion relation:

G�j + 1� − pG�j� =
1

p�z − 1�
�G�j� − pG�j − 1�� , �91�

where we defined

G�j� = ��0��j� − n2. �92�

Then, the two-point density correlation functions ��0��j� for
any j take the expression

��0��j� = n2 + n�1 − n�pj ⇒
��0��j� − n2

n�1 − n�
= pj . �93�

We are now in the position to calculate higher order correla-
tion functions. By putting Eq. �93� into Eq. �89� we get

K�1��j� = n2 +
1

z
n�1 − n��pj−1 + �z − 1�pj+1� , �94�

while, by putting the result �93� into Eq. �E13� we obtain

��1��j� = n��1� +
�1 − n�n

z
�npj−1 + �1 + n�z − 2��pj

+ �1 − n��z − 1�pj+1	 . �95�

By noting that the parameter p can be written as

p = 1 −
X

n
= 1 −

�n��0��0

�n�0��
�96�

we see that it is always p�1. Then the correlation functions
��0��j�, K�1��j�, ��1��j� satisfy the ergodic theorem

limj→���0��j� = �n�0���n�j�� = n2,
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limj→�K�1��j� = �n��0���n�j�� = n2,

limj→���1��j� = �n�0�n��0���n�j�� = n��1�. �97�

Recalling Eq. �4�, we can evaluate from Eq. �93� the spin-
spin correlation function

�S�0�S�j�� = m2 + �1 − m2�pj . �98�

This expression coincides with the result of Refs. �26�. Now,
by defining the correlation function

GS�j� = �S�0�S�j�� − �S�0���S�j�� �99�

we obtain from Eq. �98�

GS�j� = �1 − m2�e−j/�, �100�

where the correlation length is defined as

� = �ln1

p
��−1

. �101�

B. Three-point correlation functions

Following the same line of reasoning which led us to the
two-point correlation functions, let us now calculate three-
point correlation functions. Let us define the general three-
point correlator as

T�k��j,w� = �c�0�c†�0��n��0��k−1n�j�n�w��

= M�k−1��j,w� − N�k−1��j,w� �k � 1� , �102�

where we introduce the new correlation functions

M�k��j,w� = ��n��0��kn�j�n�w�� , �103�

N�k��j,w� = �n�0��n��0��kn�j�n�w�� . �104�

By j and w we denote two sites at a distance of j and w steps,
respectively, with respect to the central site �0�. Let us dis-
tinguish the two following cases: �1� j and w belong to the
same subtree and �2� j and w belong to different subtrees.

Case 1. j and w belong to the same subtree, which we
take as the z-subtree, but any subtree can be chosen. By
means of Eqs. �42�, �45�, and �48� and by noting that

�c�0�c†�0��0

�e−�HI�0
= C1,1 = 1 − n , �105�

we can express T�k��j ,w� as

T�k��j,w� = M�k−1��j,w� − N�k−1��j,w�

= �1 − n���n��0��k−1n�j�n�w��0. �106�

Let us concentrate the attention on the two functions
N�0��j ,w�= �n�0�n�j�n�w�� and M�1��j ,w�= �n��0�n�j�n�w��.
At first, we note that these functions are related through the
following relation:

M�1��j,w� =
1

z
N�0��j − 1,w − 1� +

z − 1

z
N�0��j + 1,w + 1� .

�107�

Next, let us study the function N�0��j ,w�; by recalling the
definitions �75� it is immediate to see that

N�0��0,0� = �n�0�n�0�n�0�� = �n�0�� = n ,

N�0��0,1� = N�0��1,0� = N�0��1,1� = �n�0�n�1�� = ��1�,

N�0��0,2� = N�0��2,0� = N�0��2,2�

= �n�0�n�2�� =
1

z − 1
�z��2� − n� ,

N�0��1,2� = N�0��2,1� = �n�0�n�1�n�2�� =
1

z − 1
�z��2� − ��1�� .

�108�

Recalling the relations �D12� in Appendix D and the expres-
sion p= ��1�−n2

n�1−n� , the correlation function N�0��j ,w� can be writ-

ten in the closed form

N�0��j,w� = n3 + n2�1 − n��pj + pw−j� + n�1 − n�2pw,

j,w = 0,1,2. �109�

In order to evaluate N�0��j ,w� for all values of j and w we
need a recursion formula as the one in Eq. �91�, which we
now derive following the same steps outlined in Appendix E
for the function ��0��j�.

In the H0-representation N�0��j ,w� can be written as

N�0��j,w� = �n�0�n�j�n�w�� =
�n�0�n�j�n�w�e−�HI�0

�e−�HI�0
.

�110�

Recalling that �cf. Eq. �69�� e−�HI =�p=1
z �1+An�0�n�p��, by

making use of Eqs. �68� and �70�, as well as of the Eq. �62�
for the parameter X, we have

N�0��j,w� =
X

1 + AX2 �n�j�n�w��1 + An�z���0. �111�

Let us now calculate the function N�1��j ,w�
= �n�0�n��0�n�j�n�w��. By following the same procedure, we
obtain for j ,w�1:

N�1��j,w� =
�z − 1�

z

X2�1 + A�
�1 + AX��1 + AX2�

�n�j�n�w��1 + An�z���0

+
1

z

X�1 + A�
1 + AX2 �n�z�n�j�n�w��0. �112�

For simplicity, let us restrict the analysis to the case where w
follows j �i.e., we can write w= j+r, where r is the number
of steps necessary to go from w to j�. In this case we have
M�0��j ,w�=��0��r� and Eq. �106� for k=1 gives
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��0��r� − N�0��j, j + r� = �1 − n��n�j�n�j + r��0. �113�

By combining Eqs. �113� and �111� we can express the two
quantities �n�j�n�j+r��0 and �n�j�n�j+r�n�z��0 in terms of
N�0��j , j+r� and ��0��r� as follows:

�n�j�n�j + r��0 =
1

�1 − n�
���0��r� − N�0��j, j + r�� ,

�n�j�n�j + r�n�z��0 =
1 + AX2

AX�1 − X�
N�0��j, j + r�

−
1

A

1

�1 − n�
��0��r� . �114�

By using the relation �106� for k=2 and by observing that

�n��0�n�j�n�j + r��0 =
1

z
�n�j�n�j + r�n�z��0

+
z − 1

z
X�n�j�n�j + r��0, �115�

we can express the function M�1��j , j+r� in terms of
N�0��j , j+r� and ��0��r� as

M�1��j, j + r� = � �z − 1�p
z

+
1

zp
�N�0��j, j + r�

+ � �z − 1�p
z

−
1

zp
�n�1 − p���0��r� .

�116�

Recalling that �see Eq. �93�� ��0��r�=n2+n�1−n�pr we ob-
tain from Eq. �107� the relevant recursion rule

N̂�0��j + 1,w + 1� − pN̂�0��j,w�

=
1

p�z − 1�
�N̂�0��j,w� − pN̂�0��j − 1,w − 1�� , �117�

where we defined

N̂�0��j,w� = N�0��j,w� − n3 − n2�1 − n�pw−j . �118�

By recalling the result �109�, it is easy to see that the follow-
ing expressions hold for any j and w

N̂�0��j,w�
n�1 − n�

= npj + �1 − n�pw, �119�

N�0��j,w� = n3 + n2�1 − n��pj + pw−j� + n�1 − n�2pw.

�120�

By using the transformation �4� we obtain from Eq. �120� the
expression of the three-spin correlation function

�S�0�S�j�S�w�� = m3 + m�1 − m2��pj − pw + pw−j�;
�121�

this expression agrees with the one given in Ref. �33�, where
it was calculated for the one-dimensional case �i.e., z=2�. It
is interesting to notice that the expressions of the spin corre-

lation functions �cf. Eqs. �98� and �121�� depend on the co-
ordination number z only through the parameters p and m.

We are now in position to calculate the correlation func-
tions M�1��j ,w� and N�1��j ,w�. Straightforward calculations
give

M�1��j,w� = n3 +
1

z
n�1 − n��n�pj−1 + pw−j� + �1 − n�pw−1

+ �z − 1��n�pj+1 + pw−j� + �1 − n�pw+1�	 , �122�

N�1��j,w� = n2��1� + n2�1 − n��npw−j + �1 − n�pw−j+1�

+
n�1 − n�

z
�n2pj−1 + �1 − n�2pw

+ n�1 − n��pw−1 + pj�� +
n�1 − n��z − 1�

z

��n2pj + �1 − n�2pw+1 + n�1 − n��pj+1 + pw�� .

�123�

Let us notice that all the correlators N�0��j ,w�, M�1��j ,w�, and
N�1��j ,w� satisfy the ergodic theorem.

Case 2. Let us now switch to the second case: j and
w belong to different subtrees, which we take as the z and
�z−1� subtree, respectively. By performing the same steps
which led to Eq. �106� and by noting that in such a case
M�0��j ,w�=��0��j+w� we obtain the relation

N�0��j,w� = ��0��j + w� − �1 − n��n�j��0�n�w��0. �124�

Recalling the expressions �E11� for �n�j��0 and Eq. �93� for
��0��j+w�, we obtain for any j and w

N�0��j,w� = n3 + n2�1 − n��pj + pw� + n�1 − n�2pj+w.

�125�

To calculate higher order correlation functions we observe
that

M�1��j,w� =
1

z
N�0��j − 1,w + 1� +

1

z
N�0��j + 1,w − 1�

+
z − 2

z
N�0��j + 1,w + 1� . �126�

Putting Eq. �125� into Eq. �126� we have

M�1��j,w� = n3 +
1

z
n�1 − n��n�pj−1 + pw−1� + 2�1 − n�pj+w

+ �z − 1�n�pj+1 + pw+1� + �z − 2��1 − n�pj+w+2� .

�127�

In order to calculate N�1��j ,w� let us observe that

N�1��j,w� = M�1��j,w� − T�2��j,w�

= M�1��j,w� − �1 − n��n��0�n�j�n�w��0 �128�

which, by noting that
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�n��0�n�j�n�w��0 =
1

z
�n�z�n�j��0�n�w��0 +

1

z
�n�z − 1�n�w��0

��n�j��0 +
z − 2

z
X�n�j��0�n�w��0, �129�

and recalling Eqs. �E11� and �127�, becomes

N�1��j,w� = n2��1� +
��z − 2�n + 1�

z
n2�1 − n��pj + pw�

+
�z − 1�

z
n2�1 − n�2�pj+1 + pw+1�

+
n3�1 − n�

z
�pj−1 + pw−1� +

2

z
n2�1 − n�2pj+w−1

+
�z − 2�

z
n3�1 − n�pj+w+1

+
�2�1 − 2n� − �z − 4�n2�

z
n�1 − n�pj+w

+
�z − 2�

z
n�1 − n�2pj+w+2 �130�

for any j and w. Also in this case the ergodic theorem is
satisfied.

VII. RESULTS

In the previous sections we have shown that all the prop-
erties of the system are expressed in terms of the correlator
X= �n��0��0. This quantity is determined in terms of the ex-
ternal parameters J, T, h by solving Eq. �62�, which is a
polynomial of order z in the variable X. In this section we
discuss the solutions of Eq. �62� and present the results ob-
tained for various properties: the magnetization, the suscep-
tibility, the specific heat, the free energy, and the entropy. We
shall discuss separately the cases of zero and finite magnetic
field, by focusing the analysis to a ferromagnetic coupling
�i.e., J�0�.

A. Zero magnetic field

In the case of zero magnetic field we have �=−2zJ; then,
it is useful to define K=e2�J so that the Eq. �62� takes the
form

XKz = �1 − X��1 + �K2 − 1�X�z−1. �131�

It is easy to see that

X =
1

1 + K
=

1

e2�J + 1
�132�

is always a solution of Eq. �131� for any value of the coor-
dination number z. By putting Eq. �132� into Eqs. �72� and
�73� we have

n = �n�0�� =
1

2
, m = �S�0�� = 0. �133�

The particle density and the magnetization do not depend on
the temperature and on the coordination number z. This is a

manifestation of the particle-hole symmetry, when we recall
the scaling law �10� for the chemical potential. But Eq. �131�
may admit other solutions which break the particle-hole
symmetry. In particular, let us study if there is a critical
temperature Tc such that the magnetization is different from
zero for T�Tc. In order to determine Tc let us expand Eq.
�131� in power series of X around the point given by Eq.
�132�. At first order we obtain

X −
1

1 + K
��z�K − 1� − 2K� = 0. �134�

Therefore, in addition to the solution �132� there may be
other solutions when K= z

z−2 . Such an equation shows that
there is a critical temperature Tc, given by

2J = kBTc ln z

z − 2
� , �135�

such that for T�Tc we may have solutions which spontane-
ously break the particle-hole symmetry and exhibit a magne-
tization different from zero. Let us notice that the case z=2
�i.e., the one-dimensional chain� gives Tc=0. Let us also
point out that Eq. �135� admits a solution only when J�0.
For negative J �i.e., antiferromagnetic coupling� there is no
solution. If z is even, Eq. �131� admits another solution

X =
1

1 − K
=

1

1 − e2�J �136�

which also gives the results quoted in Eq. �133�. However,
such a solution describes an unstable system: the energy is a
decreasing function of temperature and the parameter p is
larger than one. This solution will be disregarded in the fol-
lowing.

Generally, for z�2 we have the following situation. z
even:

T � Tc�two solutions corresponding to n =
1

2
and m = 0,

two solutions corresponding to ± m � 0,

the remaining roots are complex,
�

T � Tc�two solutions corresponding to n =
1

2
and m = 0,

the remaining roots are complex.
�

z odd:

T � Tc�one solution corresponding to n =
1

2
and m = 0,

two solutions corresponding to ± m � 0,

the remaining roots are complex,
�

T � Tc�one solution corresponding to n =
1

2
and m = 0,

the remaining roots are complex.
�

By considering the following items. �i� The broken sym-
metry solution �i.e., m�0� has a free energy lower than the
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one corresponding to the symmetric solution, �ii� the solution
�136� is disregarded because not physical, �iii� the two solu-
tions corresponding to ±m are physically equivalent, �iv� all
the complex solutions are disregarded, we can assert that Eq.
�131� admits only one solution of physical interest.

For T�Tc we have the following results:

X =
1

2
�1 − tanh��J��, n =

1

2
,

��1� =
1

4
�1 + tanh��J��, p = tanh��J� ,

m = 0, E = − J tanh��J�, C = kB��J sech��J��2,

� =
��1 + tanh��J��

1 − �z − 1�tanh��J�
. �137�

For T�Tc the breaking symmetry solution depends on z.
We shall present results for z=3 and z=4. For the case of z

=3 the critical temperature is given by
kBTc

J = 2
ln 3 �1.82048.

The solution of Eq. �131� is

X =
�K + 1��K − 2� + K��K + 1��K − 3�

2�K2 − 1�
,

n =
�K + 1��K − 2� + K��K + 1��K − 3�

2�K + 1��K − 2�
,

m =
K��K + 1��K − 3�

�K + 1��K − 2�
,

p =
1

K − 1
, � =

4�K

�K − 3��K − 2�2�K + 1�
. �138�

For the case of z=4 the critical temperature is given by
kBTc

J = 2
ln 2 �2.88539. The solution of Eq. �131� is

X =
K2 − 2 + K�K2 − 4

2�K2 − 1�
,

n =
K2 − 2 + K�K2 − 4

2�K2 − 2�
, m =

K�K2 − 4

K2 − 2
,

p =
1

K2 − 1
, � =

4�K2

�K2 − 4��K2 − 2�2 . �139�

For all values of z the parameter ��1� and the internal energy
E can be calculated by means of the expressions

��1� = n�p + n�1 − p��, E = 4Jn�1 − n��1 − p� − 2J .

�140�

In Fig. 1 we plot the magnetization per site m= �S�0�� as a
function of the temperature, expressed in units of J, for the
values of the coordination number z=3 and z=4. As ex-
pected, the magnetization decreases by increasing T and van-
ishes at the critical temperature Tc, determined by Eq. �135�.
By expanding the parameter K=e2�J around the critical tem-
perature Tc:

K = Kc�1 + bt� + O�t2� , �141�

where

t =
Tc − T

Tc
, Kc =

z

z − 2
, b = ln z

z − 2
� , �142�

we can easily show that close to Tc the magnetization be-
haves as

m = �3�3bt

2
+ O�t3/2� z = 3,

2�2bt + O�t3/2� z = 4,
� �143�

with critical exponents �= 1
2 , in agreement with Refs.

�25,26�. The behavior of the parameter p=1−
�n��0��0

�n�0�� as a

function of T
J is shown in Fig. 2. By increasing the tempera-

ture, p first increases up to the maximum value �p�T=Tc
= 1

z−1 ,
then decreases. It is always p�1: this condition implies the
ergodic behaviour of the spin correlation functions, when we
recall the results of Sec. VI. We notice that for T�Tc the
value of p is the same for all values of z.

In Fig. 3 we report the temperature dependence of the
spin susceptibility per site �= � �m

�h
�
h=0. This quantity diverges

at T=Tc with critical exponents �=��=−1:

FIG. 1. The magnetization m is plotted against T /J for z=3 and
z=4 and zero magnetic field.

FIG. 2. The parameter p is plotted against T /J for z=3 and
z=4 and zero magnetic field.
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� = �
�Tc − T�−1

b�z − 2�
T � Tc,

2�T − Tc�−1

b�z − 2�
T � Tc.� �144�

To the contrary of p, above Tc the susceptibility changes with
z, as can be seen by Eq. �78�. The specific heat per site is
reported in Fig. 4 as a function of the temperature. We ob-
serve a jump in correspondence of Tc, with critical exponents
�=0, as expected for a second order phase transition. It can
be shown that the jump �C at T=Tc is given by

�C = �
21J2

4Tc
2 −

4J2Kc

�1 + Kc�2Tc
2 =

9

8
�ln 3�2, z = 3,

80J2

9Tc
2 −

4J2Kc

�1 + Kc�2Tc
2 = 2�ln 2�2, z = 4.�

�145�

We notice that the jump decreases with z, and that above Tc
the behavior of the specific heat does not depend on the
value of z.

The temperature dependence of the internal energy E, of
the free energy F and of the entropy S is shown in Figs. 5–7,
respectively. We observe the different behavior at Tc: F is a
smooth function, while E and S exhibit a drastic change. This
behavior shows that at Tc we have a second-order phase
transition. Also, we note that above Tc the internal energy
does not depend on z, while the free energy and the entropy
depend on z.

In Fig. 8 we plot the spin correlation function ��0��j�
= �n�0�n�j�� versus the distance j for z=3 and several values
of the temperature, chosen below and above the critical tem-
perature. We clearly see that a long-range ferromagnetic or-
der is established below Tc.

B. Finite magnetic field

For finite magnetic field Eq. �62� for the parameter X can
be written as

�1 − X�H�1 + �K2 − 1�X�z−1 − XKz = 0, �146�

where we put K=e2�J and H=e2�h. For H�1 this equation
does not admit a general solution for any value of the coor-
dination number, and we must discuss case by case. For
z=2 the solution is

FIG. 6. The free energy F is plotted against T /J for z=3 and
z=4 and zero magnetic field.

FIG. 3. The susceptibility � is plotted against T /J for z=3 and
z=4 and zero magnetic field.

FIG. 4. The specific heat C is plotted against T /J for z=3 and
z=4 and zero magnetic field.

FIG. 5. The internal energy E is plotted against T /J for z=3 and
z=4 and zero magnetic field.
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X =
K2�H − 1� − 2H + K�K2 + H2K2 − 2H�K2 − 2�

2H�K2 − 1�
�147�

which describes the well known solution of the one-
dimensional spin-1 /2 Ising model. The other root of Eq.
�146� corresponds to a physically unstable system and is dis-
regarded.

For z=3 it is possible to show that there is a critical tem-
perature Tc�h�, depending on the magnetic field, such that for
T�Tc�h� there are three real and unequal roots, while for
T�Tc�h� there is one real root and two conjugate imaginary
roots. Tc�h� is determined by the following equation:

8K3H = K4 + 18K2 − 27 − �K2 − 9�3/2�K2 − 1. �148�

For z=4 there are four real and unequal roots for T�Tc�h�,
while for T�Tc�h� there are two real unequal roots and two
conjugate imaginary roots.

In Fig. 9 we report Tc�h� as a function of the magnetic
field for z=3,4. By increasing �h�, Tc�h� decreases from the
value kBTc= 2J

ln�z/z−2� �cf. Eq. �135�� and vanishes at �h�=J�z
−2�.

For z=3, below Tc�h� the three real solutions have the
following behavior: one solution satisfies the particle-hole
symmetry �i.e., �n�= 1

2 at �=−2zJ� but corresponds to an

unstable system �for example the compressibility is nega-
tive�. The other two solutions violate the particle-hole sym-
metry and describe a finite magnetization for any value of
the magnetic field, in a direction parallel and anti-parallel to
h, respectively. By disregarding the unstable solution and by
picking up the one which describes a magnetization in the
direction of the magnetic field, we can assert that in the
entire plane �h ,T� Eq. �146� admits only one physical solu-
tion given by

X = 2�a

3
cos�	� −

c

3
, T � Tc�h� ,

X =�3 b

2
+�b2

4
−

a3

27
+�3 b

2
−�b2

4
−

a3

27
−

c

3
,

T � Tc�h� , �149�

where

a =
K3�KH − 3�
3H�K2 − 1�2 , b =

K3�2HK3 − 9K2 + 27�
27H�K2 − 1�3 ,

c =
3 − K2

K2 − 1
, 	 =

1

3
cos−133/2b

2a3/2� . �150�

A similar situation holds for z=4. Below Tc�h�, two solutions
satisfy the particle-hole symmetry but correspond to an un-
stable system; the other two solutions violate the particle-
hole symmetry and describe a finite magnetization, parallel
and antiparallel to h, respectively. Above Tc�h�, among the
two solutions, only one has a physical meaning.

Once X is known, we can calculate the various properties
by using the formulas given in Sec. V and VI. The behavior
of the magnetization, the susceptibility, and the specific heat
as functions of the temperature are reported in Figs. 10–12,
respectively, for several values of the magnetic field. At low
temperatures the system is fully polarized by any finite mag-
netic field. By increasing temperature, the magnetization de-
creases and tends to zero in the limit T→�. The different
behavior of the magnetization, below and above the critical
temperature Tc, is shown in Fig. 13, where m is plotted as a
function of the magnetic field for several values of T. For

FIG. 7. The entropy S is plotted against T /J for z=3 and z=4
and zero magnetic field.

FIG. 8. The spin correlation function ��0��j� is plotted against j
for z=3 and zero magnetic field.

FIG. 9. The temperature Tc�h� is plotted against the magnetic
field h for z=3,4.
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finite h the susceptibility and the specific heat do not exhibit
a discontinuity, there is a peak at a certain temperature T*

which increases with h.

VIII. CONCLUSIONS

In this paper we have studied the ferromagnetic spin-1
2

Ising model in the presence of an external magnetic field on
the Bethe lattice by means of the equations of motion
method and of the Green’s function formalism. First, it has
been shown that there exists a mapping between such a
model and a fermionic one built of one species of particles
localized on the sites of a Bethe lattice and interacting via an
intersite Coulomb interaction. Then, an exact solution has
been found for the Bethe lattice with any coordination num-
ber z in terms of a finite and complete set of eigenoperators
and eigenvalues of the fermionic Hamiltonian. This solution
allowed us to write exact expressions for the corresponding
Green’s function and correlation functions which depend on
a finite set of parameters to be determined in a self-consistent
way. Such parameters have been exactly fixed by means of
algebra constraints. So local and nonlocal correlation func-
tions have been calculated up to four point ones, together
with the corresponding physical quantities, i.e., the particle
density, the magnetization per site, the susceptibility, the cor-
relation length, the internal energy per site, the specific heat,
and the entropy. All the results are in perfect agreement with

the ones existing in literature. The results are discussed in
great detail for the first two values z=3,4 of the coordination
number of the Bethe lattice with and without external mag-
netic field. Our procedure also allows us to generalize the
known results, as it has been explicitly shown in the case of
nonlocal correlation functions, where expressions not previ-
ously reported for the three-point spin-spin correlation func-
tion have been obtained, together with a general calculation
scheme which can give rise to higher order correlators.
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APPENDIX A: CALCULATION OF †n�
‡

k

Let us recall the following definition:

n��i� =
1

z
�n1 + n2 + ¯ + nz� , �A1�

where np �p=1, . . . ,z� are the first nearest neighbors of the
site i. Then we have to calculate the power

FIG. 12. The specific heat C is plotted against T /J for z=3 and
several values of the magnetic field.

FIG. 13. The magnetization m is plotted against h /J for z=3 and
several values of the temperature.

FIG. 10. The magnetization m is plotted against T /J for z=3
and several values of the magnetic field.

FIG. 11. The susceptibility � is plotted against T /J for z=3 and
several values of the magnetic field.
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�n��i��k =
1

zk �n1 + n2 + ¯ + nz�k. �A2�

By considering the algebraic property �np�m=np �m
=1,2 , . . . �, after some easy but lengthy calculations, it can be
shown that

�n��i��k =
1

zk �
p=1

z

bp
�k�Np

�z�, �A3�

where Np
�z� are the operators

Np
�z� = �

l1�l2�. . .�lp=1

z

nl1
nl2

. . . nlp
�A4�

and bp
�k� are some positive integer numbers, defined as

b1
�k� = 1,

bp
�k� = �

l1=p−1

k−1

�
l2=p−2

l1−1

�
l3=p−3

l2−1

¯ �
lp−2=2

lp−3−1

�
lp−1=1

lp−2−1  k

l1
�l1

l2
�

�l2

l3
�¯ lp−3

lp−2
�lp−2

lp−1
� �p � 1� . �A5�

It is important to notice that bp
�k�=0 for p�k. In particular for

the first values of p we get

b2
�n� = 2�2n−1 − 1� ,

b3
�n� = 3�3n−1 − 2n + 1� ,

b4
�n� = 4�4n−1 − 3n + 3 � 2n−1 − 1� ,

b5
�n� = 5�5n−1 − 4n + 2 � 3n − 2n+1 + 1� . �A6�

The above results are valid for any lattice with coordination
number z.

APPENDIX B: CALCULATION OF THE COEFFICIENTS
Am
„k…

Given the results in Appendix A, we can write

�n��i��k = �
m=1

z

Am
�k��n��i��m, �B1�

where the coefficients Am
�k� are some rational numbers which

must satisfy the relations

�
m=1

z

Am
�k� = 1,

Am
�k� = �m,k �k = 1, . . . ,z� . �B2�

The first relation follows by putting n��i�=1 while the sec-
ond can be derived by considering the case 1�k�z. Indeed
we must calculate the coefficients Am

�k� only for k�z+1 and
m=1, . . . ,z. By noting that for k�z+2 we can write

�
m=1

z

Am
�k��n��i��m = �

m=1

z

Am
�k−1��n��i��m+1, �B3�

the following recursion rule can be established:

Am
�k� = Am−1

�k−1� + Az
�k−1�Am

�z+1�, �m = 1, . . . ,z�, A0
�k−1� = 0.

�B4�

This rule implies that we must calculate only the z coeffi-
cients Am

�z+1� �m=1, . . . ,z�, which can be done by means of
the relation �B1� evaluated for k=z+1:

�n��i��z+1 = �
m=1

z

Am
�z+1��n��i��m. �B5�

By using the results given in Appendix A to rewrite Eq. �B5�,
we obtain the equation

�
k=1

z

bk
�z+1�Nk

�z� = �
m=1

z

Am
�z+1�zz+1−m�

k=1

m

bk
�m�Nk

�z�, �B6�

which, by noting that the operators Nk
�z� are linearly indepen-

dent, takes the form

�
m=k

z

Am
�z+1�zz+1−mbk

�m� − bk
�z+1� = 0 �k = 1, . . . ,z� . �B7�

Such equations give rise to the iterative solution

Az
�z+1� =

bz
�z+1�

zbz
�z� ,

Az−1
�z+1� =

1

z2bz−1
�z−1� �bz−1

�z+1� − Az
�z+1�zbz−1

�z� � ,

Az−2
�z+1� =

1

z3bz−2
�z−2� �bz−2

�z+1� − Az−1
�z+1�z2bz−2

�z−1� − Az
�z+1�zbz−2

�z� � ,

]

A1
�z+1� =

1

zz �1 − A2
�z+1�zz−1 − A3

�z+1�zz−2 − . . . − Az−2
�z+1�z3

− Az−1
�z+1�z2 − Az

�z+1�z� . �B8�

As an example, we give the values of the coefficients Am
�k� for

the first values of z

z = 2: A1
�3� = −

1

2
, A2

�3� =
3

2
,

z = 3: A1
�4� =

2

9
, A2

�4� = −
11

9
, A3

�4� = 2,

z = 4: A1
�5� = −

3

32
, A2

�5� =
25

32
, A3

�5� = −
35

16
, A4

�5� =
5

2
,
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z = 5: A1
�6� =

24

625
, A2

�6� = −
274

625
, A3

�6� =
9

5
,

A4
�6� = −

17

5
, A5

�6� = 3,

z = 6: A1
�7� = −

5

324
, A2

�7� =
49

216
, A3

�7� = −
203

162
,

A4
�7� =

245

72
, A5

�7� = −
175

36
, A6

�7� =
7

2
. �B9�

APPENDIX C: CALCULATION OF Š†n�
„0…‡k

‹0

By means of the results given in Appendix A we can write
that

��n��0��k�0 =
1

zk �
p=1

z

bp
�k��Np

�z��0. �C1�

The particular topology of the Bethe lattice allows us to de-
couple the correlation functions in the H0 representation �see
Eq. �48�� and to obtain

�Np
�z��0 = �

l1�l2�. . .�lp=1

z

�nl1
nl2

. . . nlp
�0

= ��n��0��0�p �
l1�l2�. . .�lp=1

z

= z

p
���n��0��0�p.

�C2�

It follows that

��n��0��k�0 =
1

zk �
p=1

z z

p
�bp

�k�Xp, �C3�

where X= �n��0��0 �see Eq. �51��.

APPENDIX D: CALCULATION OF �„k… AND �„k…

In this Appendix we will calculate the local correlators
��k� and ��k� in terms of the parameter X defined in Eq. �51�.
We recall the definitions given in Sec. 5:

��k� = �n�0��n��0��k� ,

��k� = ��n��0��k� . �D1�

Let us start with ��k� which, according to Eq. �42�, can be
written as

��k� =
�n�0��n��0��ke−�HI�0

�e−�HI�0
. �D2�

By recalling Eq. �69� and the recursion rule �A3�, we have

�n�0��n��0��ke−�HI�0 =
1

zk �
p=1

z

bp
�k��n�0��0�Np

�z��
i=1

z

�1 + Ani��
0

.

�D3�

Furthermore, by recalling Eq. �A4� it is immediate to show
that

�Np
�z��

i=1

z

�1 + Ani��
0

= z

p
��1 + A�pXp�1 + AX�z−p.

�D4�

By putting Eqs. �D3� and �D4� into Eq. �D2� and recalling
the results �68� and �70� we obtain for k�1

��k� =
�1 − X�
1 + AX2e�� 1

zk �
p=1

z z

p
�bp

�k��1 + A�pXp�1 + AX�z−p.

�D5�

Use of Eq. �62� for the parameter X allows us to rewrite Eq.
�D5� under the form

��k� =
1

1 + AX2 �
p=1

k

ap
�z,k�X

p+1�1 + A�p

�1 + AX�p−1 , �D6�

where

ap
�z,k� =

1

zkbp
�k�z

p
� . �D7�

In order to calculate ��k�, let us start from the equation:

��k� = C1,k+1 + ��k�. �D8�

By putting together Eqs. �74� and �D6�, we obtain

��k� =
1

1 + AX2 �
p=1

z

ap
�z,k�Xp��1 − X� +

X�1 + A�p

�1 + AX�p−1� .

�D9�

In particular, from Eqs. �D6� and �D9� we have

��1� =
X2�1 + A�
1 + AX2 ,

��2� =
1

z
��1� +

z − 1

z

X3�1 + A�2

�1 + AX2��1 + AX�
�D10�

and

��1� =
X�1 + AX�
1 + AX2 ,

��2� =
1

z
��1� +

z − 1

z

X2

1 + AX2��1 − X� +
X�1 + A�2

�1 + AX� � .

�D11�

In closing this Appendix, we note the following useful rela-
tions:

��2� =
1

z
n +

z − 1

z
�n2 +

�n2 − ��1��2

n�1 − n� � ,

��2� − ��2� =
1

z
�n − ��1�� +

z − 1

z

�n − ��1��2

�1 − n�
,
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��2� =
1

z
��1� +

z − 1

z

���1��2

n
. �D12�

where we used n=��1�.

APPENDIX E: CALCULATION OF �„0…
„j… AND K„1…

„j…

Let us recall the following definitions given in Sec. VI:

K�k��j� = ��n��0��kn�j�� ,

��k��j� = �n�0��n��0��kn�j�� , �E1�

where j is a site at a distance of j�j�2� steps from the
central site. Let us make for simplicity the choice that j
belongs to the zth subtree �but any subtree can be chosen�
and let us define the correlation function of the composite
fields as

D�k��j� = �c�0�c†�0��n��0��k−1n�j�� �k � 1� . �E2�

By means of the commutation relations we note that

D�k��j� = K�k−1��j� − ��k−1��j� , �E3�

while, by using Eq. �42� and the algebraic relation �46�, we
have

D�k��j� =
�c�0�c†�0��n��0��k−1n�j��0

�e−�HI�0
. �E4�

By means of the properties of the correlation functions in the
H0 representation �see Eq. �48�� we get

D�k��j� =
�c�0�c†�0��0

�e−�HI�0
��n��0��k−1�n�j���0

= C1,1��n��0��k−1�n�j���0 = �1 − n���n��0��k−1�n�j���0,

�E5�

where we used Eq. �53�. By putting together Eqs. �E3� and
�E5� we obtain

K�k−1��j� − ��k−1��j� = �1 − n���n��0��k−1�n�j���0, �E6�

which in particular for k=1 reads

n − ��0��j� = �1 − n��n�j��0. �E7�

Let us notice that �n�j��0 depends on the site j because the H0

representation lacks of translational invariance. Let us now
start to calculate the function ��0��j�= �n�0�n�j��, which in
the H0 representation can be written as

��0��j� = �n�0�n�j�� =
�n�0�n�j�e−�HI�0

�e−�HI�0
. �E8�

By recalling that �cf. �69�� e−�HI =�i=1
z �1+An�0�ni� we have

�n�0�n�j�e−�HI�0 = �n�0��0�1 + AX�z−1��n�j��0 + A�nzn�j��0� .

�E9�

Putting Eq. �E9� into Eq. �E8�, recalling the results �68� and
�70�, using Eq. �62� for the parameter X, we obtain

��0��j� =
X

1 + AX2 ��n�j��0 + A�nzn�j��0� . �E10�

By combining Eqs. �E7� and �E10� we can express the un-
known correlation functions �n�j��0 and �nzn�j��0 in terms of
the two-point correlation function ��0��j� as follows:

�n�j��0 =
1

�1 − n�
�n − ��0��j�� ,

�nzn�j��0 = �1 + AX2

AX
+

1

A

1

�1 − n����0��j� −
1

A

n

�1 − n�
.

�E11�

Let us now calculate the function ��1��j�= �n�0�n��0�n�j�� by
following the same procedure we adopted for the calculation
of ��0��j�. Recalling Eqs. �68� and �70�, and the basic equa-
tion �62� we get

��1��j� =
�z − 1�

z

X2�1 + A�
�1 + AX��1 + AX2�

��n�j��0 + A�nzn�j��0�

+
1

z

X�1 + A�
1 + AX2 �nzn�j��0. �E12�

Now, by using the relations in Eq. �E11� it is possible to
express the correlation function ��1��j� in terms of ��0��j�:

��1��j� = −
1

z

X�1 + A�
1 + AX2

1

A

n

�1 − n�
+

�z − 1�
z

X�1 + A�
�1 + AX�

��0��j�

+
1

z

�1 + A�
A�1 − X�

��0��j� . �E13�

By using the relation �E6� for k=2 we are now in position to
calculate the function K�1��j� as

K�1��j� = ��1��j� + �1 − n��n��0�n�j��0, �E14�

which, by observing that

�n��0�n�j��0 =
1

z
�nzn�j��0 +

z − 1

z
X�n�j��0 �E15�

and recalling Eqs. �E11� and �E13�, becomes

K�1��j� =
1

zp
���0��j� − n2� +

�z − 1�p
z

���0��j� − n2� + n2,

�E16�

where we made use of the relations �72� and �79�.
Recalling now the recursion relation �cf. Eq. �89��

K�1��j� =
1

z
��0��j − 1� +

z − 1

z
��0��j + 1� �E17�

and putting that together with Eq. �E16�, we finally obtain
the relevant recurrence relation

G�j + 1� − pG�j� =
1

p�z − 1�
�G�j� − pG�j − 1�� , �E18�

where we defined

G�j� = ��0��j� − n2 = �n�0�n�j�� − n2. �E19�
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